The Application of Scalable Distributed Memory Computersto the
Finite Element Modeling of Electromagnetic Scattering

Torn Cwik, Daniel Katz*, Cinzia Zuffada, and Vahraz Jamnejad

Jet Propulsion Laboratory
4800 Oak Grove Drive
California Institute of Technology
Pasadena, California, 91109
cwik@jpl.nasa.gov

*Cray Research Inc.
Suite 1406
222 N. Sepulveda
El Segundo, Cal ifornia, 90245

SUMMARY

Large scale parallel computation can be an enabling resource in many areas of engineering
and science if the parallel simulation algorithm attains an appreciable fraction of the machine peak
performance, and if undue cost in porting the code or in developing the code for the parallel
machine is not incurred. The issue of code parallelization iSs especially significant when
considering unstructured mesh simulations. The unstructured mesh models considered in this
paper result from a finite element ssimulation of electromagnetic fields scattered from geometrically
complex objects (either penetrable or impenetrable.) The unstructured mesh must be distributed
among the processors, as must the resultant sparse system of linear equations. Since a distributed
memory architecture does not allow direct access to the irregularly distributed unstructured mesh
and sparse matrix data, partitioning algorithms not needed in the sequential software have
traditionally been used to efficiently spread the data among the processors. This paper presents a
new method for simulating electromagnetic fields scattered from complex objects; namely, an
unstructured finite element code that does not use traditional mesh partitioning algorithms.

The research described in this paper was camied out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

1. INTRODUCTION

Large scale paralel computation can be an enabling resource in many areas of engineering
and science. The available memory capacity and computational speed on large distributed memory
machines can allow the simulation of complicated engineering components if the simulation
algorithm attains an appreciable fraction of the machine peak performance, and if undue cost in
porting the code or in developing the code for the parallel machine is not incurred. The issue of
code parallelization is especially significant when considering unstructured mesh simulations. The
unstructured mesh models considered in this paper result from a finite element simulation of
electromagnetic ficlds scattered from geometrically complex objects (either penetrable or
impenetrable.) The finite element model is used to capture the complex materials involved in the
simulation, and to maintain fidelity of the structure’s geometry. The unstructured mesh must be
distributed among the processors, as must the resultant sparse system of linear equations. Since a
distributed memory architecture does not allow direct access to the irregularly distributed
unstructured mesh and sparse matrix data, partitioning algorithms not needed in the sequential
software have traditionally been used to efficiently spread the data among the processors. This
paper presents a new method for simulating electromagnetic fields scattered from complex objects;
namely, an unstructured finite element code that does not use traditiona mesh partitioning
algorithms. The complete software package is implemented on the Cray T3D massively parallel
processor using both Cray Adaptive FORTRAN (CRAFT) compiler constructs to simplify portions
of the code that operate on the it-regular data, and optimized message passing constructs on
portions of the code that operate on regular data and require optimum machine performance.

The finite clement modeling software begins with mesh data constructed on a workstation
using acommercial Iy available CAD meshing package. Because the electromagnetic scattering
smulation is an open region problem (scattered fields exist in al space to infinity), the mesh must
be truncated at a surface that maintains accuracy in the modeled fields, and limits the volume of free
space that is meshed. Local, absorbing boundary conditions can be used to truncate the mesh, but
these may be problematic because they become more accurate as the truncating surface is removed
from the scatterer, requiring greater computational expense, and they may be problem dependent.
The approach outlined in this paper solves the three-dimensiona vector Helmholtz wave equation,
using a coupled finite element-integral equation method. A specific integral equation (boundary
element) formulation that efficiently and accurately truncates the computational domain is used. A
partitioned system of equations results from the combination of discretizing the volume in and
around the scatterer using the finite element method, and discretizing the surface using the integral
equation method. This system of equations is solved using a two-step solution, combining a
sparse iterative solver and a dense factorization method. The matrix equation assembly, solution,

and the calculation of observable quantities are all computed in paralél, utilizing varying number of
processors for each stage of the calculation.

Various approaches have been taken for paralel implementations of unstructured mesh
simulations. A short and general overview of all stages in the simulation of high temperature
superconductors-mesh generation and refinement, domain partitioning, and linear system
solution-can bc found in [1]. Similarly, approaches have been reported for simulations in
structural mechanics using a coarse grained machine [2] and in areview article for simulationsin
fluid dynamics using a data parallel computer [3]. An early implementation of a nodal based finite
element implementation simulating scattered electromagnetic fields on a data parallel computer was
given in [4]. An implementation on a shared virtual memory machine of a finite element method
using absorbing boundary conditions, simulating scattered el ectromagnetic fields was outlined in
[5]. The application of finite volume methods using unstructured meshes for electromagnetic
modeling of both guided wave structures, and scatterers was presented in [6] and [7]. These
approaches either employ specific mesh partitioning algorithms to decompose the mesh onto the
distributed memory machine, or machine architecture and compiler attributes specific to the
computer. In both [1], [2] and [7], bisection partitioning algorithms are used. In[3] and [4], using
a data parallel computer, compiler constructs replace the partitioning algorithms, and in [5] a global
address space available on the Kendall Square Research machine was used to distribute the mesh.
A specialized partitioning algorithm for thin planar structures is employed in [6].

Rather than employing mesh partitioning methods, the emphasisin thiswork is placed on
decomposition of the resultant sparse matrix entries among the distributed memory processors.
Though there is a relationship between the geometric mesh data and the assembled sparse matrix
entries, it isthe sparse matrix that is operated on directly in the iterative solver used in most large
finite element simulations. Specifically, a distributed sparse matrix-dense vector multiply is the
computational component that must be efficiently computed at each step of the iterative algorithm.
It is therefore essential that the decomposition of matrix elements be completed in a manner that
allows an efficient matrix-vector multiply. The row slab matrix decomposition used in this work
strikes a balance between near perfect data and computational load balance among the processors,
minimal but not perfectly optimal communication of data in the matrix-vector multiply operation,
and scalability of simulating larger sized problems on greater numbers of processors.

2. THE COUPLED FINITE ELEMENT-INTEGRAL EQUATION MODEL

To practically compute a solution to exterior electromagnetic scattering problems, the
domain must bc truncated at some finite surface where the Sommerfeld radiation condition is
enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh
using only local field information at each grid point, whereas exact methods are global, needing

information from the entire mesh boundary [8]. The global method used here couples a three-
dimensional finite element solution interior to the bounding surface with an efficient integral
equation solution that exactly enforces the Sommerfeld radiation condition. The problem domain is
divided into interior and exterior regions, separated at the mesh boundary (Figure 1). The
unknown sources in the integral equation are directly related to the tangential fields on the mesh
boundary, and the radiation condition is implicitly enforced exactly through the use of the free-
space Green's function. Fieldsin the two regions arc coupled by enforcing boundary conditions
on tangential field components at the mesh boundary, thereby producing a unique and exact
solution to Maxwell’s equations in both regions.

The bounding surface chosen is the minimal surface of revolution that fits around the
scatterer. The integral equation is discretized using sub-domain basis functions along the surface
of revolution generator, and Fourier harmonics azimuthally, to greatly limit the storage necessary
in the integral equation component of the model. An outline of this formulation is presented
below. A detailed presentation can be found in [9], with further results presented in [10]. An
extension to radiation modeling is given in [11].

2.1 Finite Element Representation
In the interior region, afinite element discretization of a weak form of the wave equation is
used to model the geometry and fields, leading to

%’\%m[—:—(Vxﬁ)o(VxW*)—kzu,ﬁoW‘}Iv—j ExheW'ds=0 . (1)
0 v r av

H s the magnetic ficld (the H -cquation is used in this paper; a dual ~-equation can also be
written), W is a testing function, the asterisk denotes conjugation, and E x # is the tangential
component of E on the surface of revolution S (V). Equation (1) represents the fields internal to
and on the surface S. These fields will be modeled using a set of properly chosen finite element
basis functions. In Equation (1), &, and u, are the relative permittivity and permeability,
respectively, and &, and 1), are free-space wave number and impedance, respectively.

A set of tetrahedral, vector edge elements (Whitney elements) are used to discretize (1),

W (r)=A4

mn n

(NVA(r)=2A,(NVA, () 2

A SOR Generating Curve SOR Surface

FE

¢
Surface Coordinates (t, ¢)

Figure 1. Geometry of scattering problem showing interior and exterior regions of model.

in which A(r) are the tetrahedral shape functions and indices (m,n) refer to the two nodal points
of each edge. These elements are used for both expansion and testing (Galerkin's method) in the
finite element domain.

2.2 Combined-Field Integral Equation Representation _

In the formulation of the integral equation, fictitious electric (7 =i XH) and magnetic
(M =—#ix E) surface currents, equivalent to the tangential magnetic and electric fields just on the
exterior of the boundary surface, are defined on the boundary. These currents produce the
scattered fields in the exterior region. A lincar combination of the electric field integral equation
(EFIE) and the magnetic field integral equation (MFIE) is used in this formulation, and it can be
succinctly expressed as

ZM[IW/"“]JrZ,[J]: v, 3

where Z» and Z, are the integro-differential operators used in defining the CFIE, and V,
represents the incident field.

The integral equation on the surface of revolution is discretized by a set of basis functions
with piecewise linear variation along the surface of revolution generator, and with an azimuthal
Fourier modal variation. Applying Galerkin's method, both expansion and testing functions are

given as
Ul - ; TL(’) jn¢ 4
[U"’] [é]p(t)e “

inwhich 7, (1) isatriangle function spanning the k" annulus on the surface of revolution surface.
The variables 7 and ¢ refer to the local surface of revolution coordinates, and p is the distance
from the z-axis to a point on the surface of revolution. Each annulus spans two segments along the
generator, each referred to as a strip. Adjacent triangles overlap on one segment.

2.3 Enforcing Boundary Conditions

At the artificial surface of revolution separating the interior and exterior regions, boundary
conditions on the continuity of tangential ficld components must be enforced. Three equations are
written for the three unknown field quantities of interest, the magnetic field H internal to the
volume Vv and the electric and magnetic surface currents, J and M, on the boundary. Continuity
of the magnetic field across the boundary is enforced in a weak sense

[[AxH ~T7)e(AxT")ds =0 (5)
N

where [J is atesting function. Continuity of the electric field across the boundary is made implicit
in the finite element equation in the surface integral term 7 x E by replacing this term with M.

The surface integral in (1) and the first component of the integral in (5) are termed the
coupling integrals, since with a convenient choice of the unknown in the first and of the testing
function in the second, they are made to couple interior and exterior field representations. To
evaluate these terms, the finite element basis function W is evaluated approximately on the portion
of surface of revolution projected from the triangular facet of the tetrahedron onto a strip. Such
projections are curved triangles, curved quadrilaterals, or curved pentagons. The evaluation of the
integrals are done numerically. These coupling integrals, as well as the discretization of the second
surface integral in (5), complete the discretization of the problem

2.4 Numerical Solution of the Linear System
Having introduced the basis and testing functions for the volume as well as the surface
unknowns, substitution into the complete set of equations yiclds

K C ofH| |0
Cc' o ZJ|M|=]|o (6)
0 Zy 7,||3] |vi

where

Z,= 7’0<l7n1 '[’AXUn]) (7)

z,=(z,[0,]-U,)

The symbol T indicates the adjoint of a matrix. Note that both K and C are sparse, Z, is tri-
diagonal, and Z,, and Z, are banded. In particular the system is complex, non-symmetric, and

non-Hermitian. The sparsity of the system (6) is shown in Figure 2 for a case with only several
hundred finite element unknowns. For larger, representative cases, the number of finite element
unknowns will grow into hundreds of thousands while the number of columns in C will be
several hundred to severa thousand.

The parallel solution to this matrix equation system is completed in two steps. Initially H
in the first equation in (6) is written as H = ~K'CM and substituted into the second equation

resulting in
0

Vi

7 7

(8)
ZM ZJ

M
3|

where Z, = —C'K™'C. This relatively small system is then solved directly for M and J. By
solving the system in two steps, the interior solution is decoupled from the incident field Vi,
alowing for efficient solutions when many excitation fields arc present as in monostatic radar cross
section simulations.

The relative numbers of unknowns in H and M (or J) makes the calculation of K™'C the
major computational expense. This operation is the solution of a system of equations, KX = C,
where C is a rectangular matrix with a potentialy large number of columns in the case of
electricaly large scatterers. The solution is accomplished by using a symmetric variant of the
quasi-minimum residual iterative agorithm. The resulting overall matrix (8) is treated as being
dense, and the solution of this second system is accomplished via a direct dense LU
decomposition, since its size is relatively small.

COLUMN INDEX
T

~a8 [T B

ROW INDEX
T
.]
(i

Ky

N

T T Py ry Y Y
o 50 100 150 200 250 300

Figure 2. Scatter plot graphically showing structure
of system of equations. Darkened spaces indicate
non-zero matrix entries.

3. UNSTRUCTURED SPARSE MATRIX DECOMPOSITION

The solution of the large sparse system is the central component of the finite element
simulation. Traditionally, the dependence between mesh data and the resultant sparse matrix data
has been exploited in the development of mesh petitioning algorithms [12-1 5]. These agorithms
break the physical mesh or its graph into contiguous pieces that are then read into each processor of
a distributed memory machine. The mesh pieces are generated to have roughly the same number of
finite elements, and to some measure, each piece has minimal surface area, Since the matrix
assembly routine generates non-zero matrix entries that correspond to the direct interconnection of
finite elements (elements that do not physically touch do not generate a matrix entry), the mesh
partitioning algorithm attempts to create a load balance of the sparse system of equations.
Processor communications in the agorithm that solves the sparse system is meant to be limited by
the ability to minimize the surface area of each mesh picce.

The algorithm for mesh partitioning typically requires less computational time than the rest
of the finite element simulation, but due to the complexity of the algorithm needed to create good
load balance and minimal processor communication, the development of parallel partitioning codes
can be quite expensive. The complexity results from the irregularity of mesh data inherent in
volumetric finite element modeling. The strategy followed in this paper is to exploit the availability
of a global address space by using compiler constructs to efficiently decompose the matrix data
among processors of the Cray T3D. Because the amount of time needed to perform the matrix
decomposition is asmall fraction of the overall simulation time, any minor inefficiencies in using
the shared memory compiler constructs arc relatively unimportant. The matrix equation solution——
the major time expense of the overall simulation-and the calculation of observables are
accomplished using message passing agorithms. This strategy alows the use of global addressing

constructs to simplify the high complexity but computationally inexpensive portion of the
smulation, i e., the paralé finite element matrix assembly from mesh data, and the use of message
passing algorithms on the portions of the simulation that require high performance. The direct
decomposition of the matrix entries also results in regular data structures that are exploited by
efficient communication patterns in the iterative solver.

In the electromagnetic scattering application considered in this paper, the system of
equations under consideration is complex-valued, symmetric and non-definite. Because the system
has these properties, and because very large systems are considered (systems up to order one-
million) the quast minimum residua iterative agorithm is used to solve the system [16]. Each row
(or column) of the matrix has a number of non-zero entries, typicaly sixteen for the elements
currently being used, and this number is constant, independent of the mesh size. The main
expense of the solution algorithm is the sparse matrix-dense vector multiply that is inherent in this
as in most other Krylov subspace iterative algorithms. The matrix decomposition used in this
implementation is based on row slabs of the sparse reordered system. The reordering algorithm is
used to minimize the bandwidth of the sparse system. As Section 4 will outline, this
decomposition and reordering is chosen to minimize communication of the overlapping vector
pieces in the parallel matrix-vector multiply, reduce storage of the resultant dense vector pieces on
each processor, and allow for load balance in storage and computation.

Since the right-hand-side vectors in the parallel sparse matrix equation (KX = C) are the
columns of C, these columns are distributed as required by the row distribution of K. When
setting up the row slab decomposition, K is split by attempting to equalize the number of non-
zeros in each processor’s portion of K (composed of consecutive rows of K). The rows in a
given processors portion of K determines the rows of C that processor will contain. As an
example, if the total number of non-zerosin K is nz, aloop over the rows of K will be executed,
counting the number of non-zeros of K in the rows examined. When this number becomes
approximately nz/ P (where P is the number of processors that will be used by the matrix
equation solver), the set of rows of K for a given processor has been determined, as has the set of
rows of C.

The reordering is chosen to minimize and equalize the bandwidth of each row over the
system [17]. Because the amount of data communicated in the matrix-vector multiply will depend
upon the equalization of the row bandwidth, different reordering algorithms have been examined.
The generalized reverse Cuthill-McKee agorithm (in both the SPARSPAK [17] and the Gibbs-
Poole-Stockmeyer [18] versions) produces an ordering that minimizes system bandwidth, and
equalizes the bandwidth over each row of the matrix. Matrices resulting from objects that were
long and thin, as well as those resulting from spherical objects have been examined. The nested
dissection ordering in [15] could produce a smaller profile of the reordered matrix, but equalization

of the row bandwidth was not accomplished; row bandwidths even approaching the matrix order
were found in a few rows of the matrix.

The matrix decomposition code, termed P_SLICE, consists of a number of subroutines.
Initialy, the potentially large mesh files are read (READ). Then the connectivity structure of the
sparse matrix is generated and reordered (CONNECT), followed the generation of the complex-
valued entries of K (FEM), building the connectivity structure and falling the C matrix
(COUPLING). Finaly the individua files containing the row slabs of K and the row slabs of C
must be written to disk (WRITE). For each processor that will be used in the matrix equation
solver, one file containing the appropriate parts of both the K and C matricesis written.

3.1 Port to T3D Using CRAFT

Cray Research Adaptive FORTRAN (CRAFT) is used for the matrix decomposition stage
of the simulation. All large arrays are declared using CDIR$ directives to be shared in either a
block manner or a cyclic manner for the leading dimension, with non-leading dimension distributed
degenerately. Using a block distribution of a matrix of size 256 on 4 processors leads to the first
64 elements residing on processor O, the next 64 elements on processor 1, etc. A cyclic
distribution would lead to processor O having elements (1, 5, 9, . ..). processor 1 having elements
(2, 6, 10, . .). etc. A two dimensiona array with a degenerate distribution of the second
dimension leads to all elements of the array having a given index in the first dimension being on the
same processor, regardless of the index in the second dimension. For example, a two dimensional
array of size (256,10) distributed degenerate] y over the second dimension will have elements
(., (,2),.... (i, 10)) al located on the same processor. Which processor this will be is
dependent on the value of i, and the method of distribution over the first dimension.

Routines which could be easily parallelized by CRAFT directives were FEM and part of
COUPLING. The directive CDIR$ DO SHARED was added to the parallelizable loops to
automatical | y distribute the work over al 1 the processors. Other routines that could be executed in
paralel with a combination of CRAFT and message passing included the READ and WRITE
routines. The remaining routines (CONNECT, and a second part of COUPLING) are basicaly
sequential routines, where only one processor is doing the majority of the work, while using data
spread across many (usualy all) processors.

Two files are read in the READ routine, one containing finite element data, and the other
containing integral equation data. The finite element tile is at least an order of magnitude larger
than the integral equation file, and is read by 4 processors. By using these 4 processors, the time
of the READ routine is reduced roughly by a factor of 3 as compared to reading the file with
1 processor. Further reduction in this time may bc possible; however, this factor of 3 is currently
sufficient. In the WRITE algorithm, data is assembled on each processing e ement and written to

10

disk. On the T3D, it is faster to assemble alocal array and write out that data than to write out a
distributed array directly, since as the number of processors increases, more writes of smaller
amounts of data are being performed, and disk and network contention develops. Scaling beyond
this point quickly leads to diminishing returns from each processor.

Figures 3 and 4 show the performance of P_SLICE over varying numbers of processors
for two different problems. The number of edgesisthe number of finite element unknownsin the
problem. It maybe observed that for the routines that have been parallelized, doubling the number
of processors reduces the amount of time by a factor of approximately two. For routines that are
sequential, where only one processor is doing the work using the other processors’ data, the time
goes up very dlightly as the number of processors for the overall code arc increased. This is due
strictly to communication latency. As the number of processors increases, the percentage of array
elements which are not local increases, and the time to load or store these elementsis longer than
the time to load or store local elements. The 1/0 time should have roughly the same behavior, but
for practical tests the 1/0 time is more dependent on the 1/0 load of the other T3D processors and
the load on the front-end YMP that is between the T3D and the disks than the number of T3D
processors being used in P_SLICE. 1tis clear that the routines that benefit most from the parallel
implementation on the T3D arc COUPLING and WRITE.

160.00 - | W WRITE
140.00 7 |

120.00

-

- 100.00

fll courLinG

[D] FEM

[coNNECT

8 .
- 80.00]
£ .
i 60.00]

40.00 -

20.00 4

0.00

Number of Processors

Figure 3. Computation time and scaling for arelatively small simulation (dielectric
cylinder with 43,791 edges, radius = 1 cm, height = 10 cm, permittivity = 4.0 at
2.5 GHz). First column shows time for single processor T90. Times on T90 for
CONNECT and FEM have been combined.

11

25.00~ i '
B WRITE
[] coupLING
20.00 -
(] FeMm
CONNECT
=15.00 - @
£
[(}]
£
i= lo,00-
5.00- S
0.00 4

T90 32 64 128 256
Number of Processors

Figure 4. Computation time and scaling for arelatively large simulation (dielectric
cylinder with 579,993 edges, radius = 1 cm, height = 10 cm, permittivity = 4.0 at
2.5 GHz). First column shows time for single processor T90. Times on T90 for
CONNECT and FEM have been combined.

4. PARALLEL SOLUTION OF PARTITIONED SYSTEM

As outlined above, the partitioned system of equations is solved in two steps, namely
P_SOLVE and P_FIELD. Initially the quasi-minimum residual algorithm [16] is used to solve the
sparse system of equations KX = C, resulting in the reduced sub-matrix Z,. The parallel quasi-
minimum residual solver developed for this application operates on matrix data decomposed by
row glabs in P_SLICE after reordering (Figure 5 shows matrix structure before and after
reordering). The machineislogically considered to be alinear array of processors, with each slab
of data residing in one of the processors. C and X are also decomposed by row dlabs,
corresponding to the row partition of the matrix. Central components of the guasi-minimum
residual algorithm that are affected by the use of a distributed memory machine are the parallel
sparse matrix-dense vector multiply, and dot products and norm calculations that need vector data
distributed over the machine. The dominant component is the matrix-vector multiply, accounting
for approximately 80% of the time required to run P_SOLVE.

A parallel library of the needed level-one BLAS routines was developed using CRAY T3D
shmem_put and shmem_get message passing. The routines required by the quasi-minimum
residual agorithm are CDOTU and SCNRM2, and the parallel implementation of these was trividl,

12

COoL

gegaboarelopesdereeloeaedopgpdonnelapealonsslypsglensy
n TR

" 12
H

ROW
ROW

pelesnalsensDoyealasaelerenloegstagsatassntensalonis
—

Figure 5. Origina matrix structure (left) and after reordering (right). Filled spots
indicate non-zero entries of matrix.

consisting of a local BLAS call to calculate each processor’s contribution to the result, and a call to
a globa sum routine to calculate the final result.

4.2 Parallel Sparse Matrix-Dense Vector Multiply

The parallel sparse matrix-dense vector multiply involves multiplying the K matrix that is
distributed across the processors in row slabs, each containing a roughly equal number of non-zero
elements, and a dense vector X, that is also distributed over the processors, to form a product
vector y, distributed as isx (Figure 6). Since the K matrix has been reordered for minimum
bandwidth, the minimum and maximum column indices of the slab are known. If the piece of the
dense vector x local to this processor has indices within this extent of column indices, the multiply
may be done locally and the resultant vector y will be purely local. In general, the local row
indices of the dense vector x do not contain the range of column indices; therefore a
communication step is required to obtain the portions of the multiply vector x required by the
column indices of the K matrix. This communication step only requires data from a few
processors to the left and right. The exact number of processors communicating data is dependent
on the row bandwidth of the local piece of K, and the number of processors being used. In the
simulations considered, the number of processors communicating data is typically one or two in
each direction on scaled problems.

This communication could be performed using either shmem_get or shimem_put. These are
one-way communication calls where the processor from whose memory the data is being gathered
or to whose memory the data is being stored, respectively, is not interrupted by the
communication. The shmem_get formulation is more intuitive and simpler to program, but the

COMMUNICATION FROM
PROCESSOR TO LEFT

ROWS

L8 | PR —
CETN X
COLUMNS*

LOCAL PROCESSOR ROWS
LOCAL PROCESSOR ROWS

COMMUNICATION FROM
PROCESSOR TO RIGHT

Figure 6. Local sparse matrix-dense vector multiply graphically displayed.

communication bandwidth of the shmem_put routine on the T3D is substantially higher than the
communication bandwidth of the shmem_get routine. For this reason, the shmem_put formulation
is used. This formulation requires the cache to be flushed to maintain cache coherency, but the
resulting performance of the matrix-vector multiply is still 15% higher than the performance
obtained using the simem_get formulation.

As described previously, the K matrix is stored in row slabs using row-compressed
storage. As K is symmetric, this is equivalent to a column slab decomposition using column-
compressed storage. K may be used in either way in the matrix-vector multiply. In this step, a
non-zero in column i requires x(i) to be obtained, and a non-zero in row j will produce a partial
result for y(j). This implies that K stored in column slabs will require only communication of
portions of y non-local to the processor after the local portion of the multiply, and similarly, K
stored in row slabs will require communication only to gather x before the local portion of the
multiply. Since similar amounts of communication are required using either storage scheme, the
scheme that minimizes the time spent in local work has been chosen for implementation. Thisis
the row slab decomposition of K, because the row-compressed storage scheme better reuses the
T3D processor’s local cache, and therefore has better overall performance.

4.2 Performance and Scalability of Parallel Sparse Matrix-Dense Vector Multiply

The goa of the combination reordering-partitioning strategy discussed above is to minimize
as well as equalize communication in P_SOLVE, while retaining memory load balance. The
partitioning chosen clearly succeeds in evenly dividing the data among the processors; Figures 7
and 8 show the relative communication time of the processors.

14

Figure 7. Graph of communication load balance for parallel matrix vector multiply,
271,158 edge dielectric cylinder, 32 processors.

Figure 7 shows results representative of the majority of the cases that have been run. All
processors, excepting those on the ends of the linear processor array, have a relatively similar
amount of communication, and since the communication is synchronized, all processors will
require as much time as the one that usesthe most t i me. Only the two end processors will be idle
very long at the barrier. For this case, all processors except the first and last have to communicate
with two other processors, one to the left and one to the right.

Figure 8 shows the other possible class of results, shared by a minority of cases that have
been run. Again, the two end processors arc using less time for communication than the majority
of processors. However, in this example, a small subset of the processors are using more time in
communication than the average processor. All the processors except those in this subset have to
wait a substantial amount of time at the barrier, and the speed pcr processor of this run is lower
than that of the first example. Again in this example, all processors but the first and last have to
communicate with at least two other processors, one to the left and one to the right, but here, the
processors in the subset that arc spending more communication time arc communicating with
possibly two processors in either direction. The issue in these few cases is that the decomposition
of the K matrix was performed entirely based on storage load balance, with the assumption that
the reordering would equalize the row bandwidth and create communication load balance. This
assumption is generally valid, as shown in Figure 7, though not always, as shown in Figure 8.

15

L1

0.9

©
@

©
N

o
o

©
o

lll]]llllll 1L 1.t 1 1 8 L 15t
p—

o
N

Scaled Communication Time
o
w

o
=

o
N

o~

Figure 8. Graph of communication load balance for parallel matrix vector multiply,
579,993 edge cylinder, 128 processors.

Another factor in the performance of the parallel matrix-vector multiply is the percentage of
communication. Thisis mainly related to the number of processors to the left and right that each
processor must communicate, and as discussed above, the maximum number that any processor
must communicate with. It is clear that running a fixed size problem on an increasing number of
processors will generate a growing amount of communication. The amount of communicationis a
function of how finely the K matrix is decomposed, since its maximum row bandwidth after
reordering is not a function of the number of processors used in the decomposition. If the
maximum row bandwidth is » and each processor in a given decomposition has approximately m
rows of K, then most processors will require one processor in each direction for communication.
If the number of processors used for the distribution of K is doubled, each processor will have
approximately m/2 rows of K. Since the row bandwidth doesn’t change, each processor will now
reguire two processors in each direction for communication. But since the number of floating
point operations required hasn’'t changed, the communication percentage should roughly double.

16

N
(6)]

—— 43791 |

—®— 166489 /

—A— 271158

¢ 579993 / /

N
o

AN
N
e

1

\

\\

Percentage of Communication
N
(6))
1

\

A~

[any
o

16 32 64 128 256
Number of Processors

Figure 9. Percentagecomfmunication versus number 01 processors tor parallél
matrix vector multiply, for four different size (number of edges) meshes of
dielectric cylinder.

This can be seen in Figure 9, which shows communication percentage versus number of
processors, for four problem sizes.

Figure 10 shows the local rate of operations/scconcl for the parallel matrix vector multiply.
It is measured after communication has been completed. It can be seen that the performance of this
operation is roughly constant, and is not easily identifiable as a function of problem size or number
of processors. To a limited extent, a problem which involved more data on each processor will run
dlightly faster than would a problem with less data on each processor, but as Figure 10
demonstrates, thisisn’'t necessarily true. The storage of the data and how it fitsin the T3D’s cache
is more important than the amount of data, and this forces the local performance rate not to be a
smple function of problem size per processor.

Shown in Figure 11 are plots of time to convergence on different numbers of processors
for five different problems. The number of unknowns in the finite element mesh and the number
of columns of C are indicated on the plots. The quasi-minimum residual algorithm was stopped
when the normalized residual was reduced three orders of magnitude for each column of C. With
an initial guess being the zero vector, this resultsin anormalized residual of 0.190, avauethat is

17

[EEN
oo

=

(o]
/
|

H
o

=
N

-
o

MFLOPS/PE (local work)
®

6 -9- 43791
~@— 166489
‘ —A— 271158
2 ¢ 579993
0 |
16 32 64 128 256

Number of Processors
Figure 10. Local operation rate versus number of processors for paralel matrix
vector multiply, for four different size (number of edges) meshes of the dielectric
cylinder.

sufficient for this scattering problem. Given a fixed communication percentage and a fixed rate for
local work, doubling the number of processors for a given problem would halve the total solution
time. The curvesin Figure 11 do not drop linearly at this rate because these assumptions are not
met, as shown by Figures 9 and 10. The decreased amount of work per processor causes the
curves t0 level off as the number of processors increases.

4.3 Additional Work in P_SOI.VI{

After each column of K™'C is computed using the quasi-minimum residual algorithm, it
must be multiplied by C' to obtain the equivalent column of Z,. Each of these multiplies requires
aglobal communication, since C is distributed over the T3D by row slabs. To reduce the number

of global communications, after a number of columns of K™'C are computed, these are multiplied
by C’, and the columns of Z, obtained are written out sequentially to disk. The original quasi-

minimum residual algorithm solved a single solution vector at a time. A pseudo-block (multiple
right-hand-side) quasi-minimum residual variant was written, which performs each quasi-
minimum residual iteration on some number of columns of C simultaneously. As the residual of

18

—m— 43791
140
g% \ 4 -« 166489
. \
120 — S T —k— 271158
] \ \ \ \ o 417350
] |
100 i \ \ \ —f4— 579993
] \ ~
H \ N —~

80

60

Solution Time (min)
u-f(f

i \‘»ﬁx \
0]] I\TI\I\I—T T T T F)
0 64 128 192 256

Number of Processors

Figure 11. Time of convergence for five different problems. The time shown is
the total execution time for the solver on different numbers of processors. The C
matrix had 116 columnsin cach case.

cach column of K 'C converges below the threshold, that column is no longer used in the quasi-
minimum residual algorithm. This variant performs the same number of floating point operations
asthe Smglcright—hand -side quasi-minimum residual algorithm, but the K matrix is required to be

loaded from memory much less often. This leads to atime savings of 10-1 5% inP_SOLVE.

5. CALCULATION OF OBSERVABLES

The final code of the simulation, P b1y >, completes the matrix calculation shownin
Equation (8) and computes observable quantities (radar cross section, ncar fields, etc.) After the
7., 7., and Z, sub-matrices and V; vector(s) arec computed, and the sub-matrix 7, (formed by
P_SOL.VE)isreadin from disk, a parallcl dense matrix 1.U decomposition algorithm is usedto
solve the reduced system [19]. Since this system is much smaller than the larger sparse system
solved above, the Z matrices may be distributed on a smaller set of processors, chosen to optimize

thesolve time. The time needed to solve this system compared to the sparse system IS a small
fraction, typically less than1%.

The radar cross section is found from the mesh surface equivalent currents M and J .
This calculation-an integral over tile surface- is casily parallelized on the processors executing
P_FIEL,1). If the radar cross section for more than one excitation vector is needed (mono-static), a
block of solution vectors are found, and a block of radar cross scctions calculated. For
completeness Figure 12 shows the radar cross section for the diclectric cylinder uscd in tile
previous results; comparison is made to the CICERO code [20]. Further results Of calculated

observables may be found in[10].

6. D 1ISCUSSION

Shown in Figure 13 is the comparison of time requirements of the three stages of the
simulation, for four different problemssizes. The problem simulated corresponds to the diclectric
cylinder outlined in previous results. Asis clearly shown, the dominant component of the

’ l I |

A — CICERO
-10 106818 edges
20
f‘r P

L 1 1 1

W
S

A
o

MONOSTATIC RCS (dB/wavelength**2)

O
o

-60

b

o 20 40 60 8 100 120 140 160 180
THETA ANGLE (deg)

Figure 12. Monostatic radar Cross section for diclectric cylinder with radius =
1.0 cm, height = 10.0 cm, relative permittivity = 4.0 at 2.5 Gllz.

20

B psuce Ll p.soLve Ll P FIELD

70 5 256 PEs

50 - 256 PEs

p——

I
o

W
O

N
o
Loas o by e Uya e laaaslo

Time 'min)

128 PEs 256 PEs

[EY
o

o

100694 271158 417359 579993
Size of problem (edges)

Figure 13. Comparison of time requirements for three stages of simulation for four
different problem sizes. The problems correspond to the dielectric cylinder shown in
Figure 12.

simulation is P, S01 .Vli---thc iterative solutionof the sparse system. The matrix
decompositionstage (P_SI .ICE) is relatively small, While the observable calculation stage
(I’ _FIELD)isaminor fraction of the total time. This last stage can grow if alarge number of ficld
caculations arc required, but it will typically remain a small fraction of the matrix solution time.

Using matrix decomposition by row-slab partitioning following reordering produced data
structures that generally allowed a balanced matrix-vector multiply in the iterative solver. The data
load balance was almost exactly uniform, while the communication overhead was moderately small
and similarly uniformly balanced over thc machine for the majority of problems considered. For
scaled-sized problems, the communication time was roughly 15% of the total matrix-vector
multiply time. Even bringing this expense down to zero time would not lead to a major
improvementinthe overall performance of the code. However, major improvements arc possible
intwo arcas: the local multiply and the number of quasi-minimum residual iterations.

First, the performance on the local portion of the sparse matrix-dense vector multiply could
be i mproved. This is dependent on the sparse data-storage structure of the matrix and how it is
loaded into the local cache. The relative sparsit y of the reordered row slab of the matrix causes the
multiply to jump around in the cache as it loads the clements of the X vector. If the these local row

21

slabs were rcordered in such a way as to obtain a more dense matrix, the local performance would
increase dramatically.

Second, an efficient paralle] preconditioner, 01 block iterative solver could decrease the
number of iterations nceded in the matrix equation solution. Naturally, the preconditioner must not
increase cither the overhead in setting up the problem or obtaining the final solution more than it
saves by lowering the iteration count. The block solver also must not increase the time per iteration
more than the amountit saves by lowering the iteration count. These last two approaches arc

currently being examined.

ACKNOWLEDGMENT

The authors wish to gratefully acknowledge the support of Jean Patterson, manager of the
task Research in Parallel Computational Electromagnetics, and Mike Heroux of Cray Rescarch,
who assisted in developing an understanding of various sparse matrix-dense vector multiplication
formulations. The JPL/Caltech Supercomputer used in this investigation was provided by the
NASA Offices of Mission to Planct Earth, Acronautics, and Space Science. The Cray 1'90 used il

this investigation was provided by the Information services Department of Cray Research.

22

(1]

12}

13]

[4]

[5]

(6]

(71

18]

[9]

[11]

[12]

REFERENCES

L.. Freitag, M. Jones, and P. Plassmann, “Parallel Algorithms for Unstructured Mesh
Computation,” Computing Systems in Engineering,vol. 5, pp. 297-309,1994.

J, Oden and A. Patra, “A Parallel Adaptive Strategy for ip Finite Element Computation s,”
Comput. Methods Appl. Mech. Engrg. , vol. 121, pp. 449470, 1995.

‘1".Tezduyar, S. Aliabadi, M. Mchr, and S. Mittal, “Massively Parallel Finite Element
Simulation of Compressible and incompressible Flows,” Comput. Methods Appl. Mech.
Engrg.,vol. 119, pp. 157-177, 1994.

S. Hutchinson, Ii. Hensel, S. Castillo, and K. Dalton, “The Finite Element Solution of
Elliptical Systems on a Data Parallel Computer,” Int. J. Numer. Methods in Engrg., vol. 32,
pp. 347-362, 1991.

A. Chatlerjec, J. Volakis, and D. Windheider, “Paralle]l Computation of 3-D Electromagnetic
Scattering Using Finite Elements,” Int. J. Numer. Model.: Elect. Net works, Devices and
Fields, vol. 7, pp. 329--342, 1994.

S. Gedney and U. Navsariwala, “A Comparison of the Performance of the Finite Difference
TIme-Doamin, Finite Elcement Time Domain, and Planar Generalized Yee Algorithms on
1 ligh-Performance Paralledl Computers,” Int. J. Numer. Model.: Elect. Net works, Devices
and Fields,vol. 8, pp. 265-275, 1995.

N. Madsen, “Divergence Preserving Discrete Surface integral Methods for Maxwell’s Curl
Equations Using Non-orthogonal Unstruactured Grids,>" Journ. of Comp. Physics, vol. 119,
pp. 34-45, 1995.

J-1.J i n, The Finite Element Method in Electromagnetics, John Wiley and Sons, Inc., New
York, 1993.

‘1", Cwik, C. Zuffada, and V. Jamncjad “I ifficient Coupling of Finite Element and Integral
Equation Representations for Three-Dimensi onal Modcling,” Finite Llement Software for
Microwave Engineering, I'. ltoh, G. Pclosi, 1. Silvester, Editors, John Wiley and Sons,
inc., to be published Summer 1 996.

T. Cwik, C. Zuffada, and V. Jamnejad, “Modeling Three-Dimensional Scatterers Using a
Coupled Finite Element-Integral Equation Representation,” IELE Trans. Antennas Propag.
to be published April 1996.

C. Zuffada, T. Cwik, and V. Jamncjad, “Modeling Radiation with anE fficient Hybrid Finite
Element-Integral Equation-Wa veguide Mode Modeling Technique,” Submitied to 1EEE
I'ransactions on Antennas and Propagation, 1995.

B. Nour-Omid, A. Raefsky, and G. Lyzenga, “Solving Finite Element Equations on
Concurrent Computers,” American Soc Mech. Eng., A. Noor Editor, pp. 29 1-307, 1986.

23

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. Pothen, }1. Simon and K. Liou, “Partitioning Sparse Matrices with Higenvectors of
Graphs,” SIAM J. Matrix Anal. Appl., vol.11, pp. 430-452, 1990.

B. Hendrickson and R. Leland, “AnlImproved Spectral Graph Partitioning Algorithm for
Mapping Paralle] Computatuions, *“ SAM./. Sci. Comput.,vol. 16, pp. .452-469, 1995.

G. Karypis and V. Kumar, “A Fastand High Quality Multilevel Scheme for Partitioning
Irregular Graphs,” Technical Report TR 95-035, Departiment of Computer Science,
University of Minnesota, 1995.

R. Freund, “Conjugatc Gradient-1'ype Mcthods for Lincar Systems with Complex
Symmetric Coefficient Matrices,” SIAM J.Stat. Comput, vol. 13, no. 1, pp. 425448, Jan>
1992.

A. George and J. Liu, "Computer Solution of 1.arge Sparse Positive Definite Systems,"
Prentice Hall, Ncw Jersey, 1981.

1. Lewis, “Implementation Of The Gibbs-Poole-Stockmeyer And Gibbs-King Algorithms,”
ACM Trans.On Math.Software,vol.8,pp. 180-189, 1982.

T.Cwik, R.vande Geijn, and J. Patterson, “Application of Massively Parallel Computation
to Integral Equation Models of Electromagnetic Scattering (Invited Paper),” J. Opt. Soc.
Am. A vol. 11,no. 4, pp. 1538-1545, April 1994,

.. N. Medgeysi-Mitschang and J. M. Putnam, “Electromagnetic Scattering from Axially
Inhomogencous Bodies of Revolution,” 1KLL Transactions on Antennas and Propagation,
vol. A 1'-32, pp. 797--806, 1984.

24

LIST OF FIGURES

Figure 1. Geometry of scattering problem showing interior and exterior regions of model.

Figure 2. Scatter plot graphically showing structure of system of equations. Darkened spaces
indicate non-zero matrix entries.

Figure 3. Computation time and scaling for arelatively small simulation (dielectric cylinder with
43,791 edges, radius = 1 cm, height = 10 cm, permittivity = 4.0 at 2.5 GHz). First
column shows time for single processor T90. Times on T90 for CONNECT and FEM
have been combined.

Figure 4. Computation time and scaling for arelatively large simulation (dielectric cylinder with
579,993 edges, radius = 1 cm, height = 10 cm, permittivity = 4.0 at 2.5 GHz). First
column shows time for single processor T90. Times on T90 for CONNECT and FEM
have been combined,

Figure5. Original matrix structure (left) and after reordering (right). Filled spots indicate non-

zero entries of matrix.

Figure 6. Local sparse matrix-dense vector multiply graphically displayed.

Figure 7. Graph of communication load balance for parallel matrix vector multiply, 271,158 edge
dielectric cylinder, 32 processors.

Figure 8. Graph of communication load balance for parallel matrix vector multiply, 579,993 edge
cylinder, 128 processors.

Figure 9. Percentage of communication versus number of processors for parallel matrix vector
multiply, for four different size (number of edges) meshes of dielectric cylinder.

Figure 10. Local operation rate versus number of processors for parallel matrix vector multiply,
for four different size (number of edges) meshes of the dielectric cylinder.

Figure 11. Time of convergence for five different problems. The time shown is the total execution
time for the solver on different numbers of processors. The C matrix had 116 columns
in each case.

Figure 12. Monostatic radar cross section for dielectric cylinder with radius = 1.0 cm, height =
10.0 cm, relative permittivity = 4.0 at 2.5 GHz.

Figure 13. Comparison of time requirements for three stages of simulation for four different
problem sizes. The problems correspond to the dielectric cylinder shown in Figure 12.

25

A SOR Generating Curve SOR surface

Surface Coordinates (t, 9)

Figure 1. Geometry of scattering problem showing interior and exterior regions of model.

26

COLUMN INDEX

20
70 J
1204+

1o

ROW INDEX

220 J

270 4

320

3 [} 1] []]]
0 50 100 150 200 250 300

Figure 2. Scatter plot graphically showing structure of system of equations. Darkened spaces
indicate non-zero matrix entries.

27

WRITE

COUPLING
FEM

CONNECT

mEm=l f |

READ

T 9 0" 8 7 16 32 64 128 256
Number of Processors

Figure 3. Computation time and scaling for arelatively small simulation (dielectric
cylinder with 43,791 edges, radius = 1 cm, height = 10 cm, permittivity = 4.0 at

2.5 GHz). First column shows time for single processor T90. Times on T90 for

CONNECT and FEM have been combined.

28

25.00-1 B e
m COUPLING
20.00- (] cem
@ CONNECT
% 15.00 - READ
£
= lo.00-
5.00-
0.00 :

Number of Processors

Figure 4. Computation time and scaling for a relatively large simulation (dielectric cylinder with

579,993 edges, radius = 1 cm, height = 10 cm, permittivity = 4.0 at 2.5 GHz). First column
Times cm T90 for CONNECT and FEM have been

shows time for single processor T90.

combined.

29

CoL

uuluulnuluull|l||l|!_|-llu||l|u|luu|uuluu N

3 T . - 1= 3

2 3 z 3
O 3 O 3
@ - 19 r
W
ERG < £ -'}g E

Figure 5. Origina matrix structure (left) and after reordering (right). Filled spots indica
zero entries of matrix.

Z non-

30

ROWS

LI
»1%‘{@
M ﬁi?:{:‘

COLUMNS

COMMUNICATION FROM
PROCESSOR TO LEFT

4

\ I LOCAL PROCESSOR ROWS

A\

LOCAL PROCESSOR ROWS

COMMUNICATION FROM
PROCESSOR TO RIGHT

Figure 6. Local sparse matrix-dense vector multiply graphically displayed.

31

—--—_--—--q—--—--—--—--——-_-_-—-__--_

~—

o ® N ©Q v 3 MO o
o O CCc O O o o o
BWI| UoIediun wwo)) pajess

b
o

o

Processor Number

Figure 7. Graph of communication load balance for parallel matrix vector multiply, 271,158 edge

dielectricc cylinder, 32 processors.

j_ LI LILILELS LER BRI LIBLELL TT1T1 —- LI __ 1

®@ N~ © w < o o o

[} (@] o o o o o o
W] uoledlunwuo) <9|eds

o
o

33

Figure 8. Graph of communication load balance for parallel matrix vector multiply, 579,993 edge

cylinder, 128 processors.

45

40 —— 43791 |

- 166489 /
35

—a&— 271158 /

30 579993 / 7
/

Percentage of Communication
N
(&)

v
. A

ta
} "]

16 32 64 128 256
Number of Processors

Figure 9. Percentage of communication versus number of processors for parallel matrix vector
multiply, for four different size (number of edges) meshes of dielectric cylinder.

)

=
N

local werk

MFLOPS/PE (

Figure 10. Local operation rate versus number of processors for parallel matrix vector multiply,

[EEN
»

(I
~

—h

P

o
1

» %ZZ:EE“'“—C%EEE:::““‘~1I -
-9- 43791
166489
—A— 271158
579993
I
16 32 128 256

Number of Processors

for four different size (number of edges) meshes of the dielectric cylinder.

-D- 43791

140
] \ k 166489
- i
120 4 : + 271158
] \ \ J\ —¢— 417359
100
O \ \ -u-- 579993
E -
.6 60 \'\Q I.J
5 ’ \
Uo)] .‘\ \
40 y p—
20] B ﬂl
0 T | T I T [[v 1
0 64 128 192

Number of Processors

Figure 11. Time of convergence for five different problems. The time shown is the total execution
time for the solver on different numbers of processors. The C matrix had 116 columns in each

case.

"
o

CICERO

106818 edges

N
o

1N
[S)

MONOSTATIC RCS (dB/wavelength**2)
W
o

on
o

THETA ANGLE (deg)

o] 20 40 60 80 100 120

TT

140 160

180

Figure 12. Monostatic radar cross section for dielectric cylinder with radius = 1.0 cm, height =

10.0 cm, relative permittivity = 4.0 at 2.5 GHz.

w B (o)) ()] ~
o (@] (o] o o
Lol

Time (min)

*]
o

llJllIIllllllllIlllIlllll

-t
o

o
|

Figure 13. Comparison of time requirements for three stages of simulation for four different

M -~ suce [l p sowve [l pFELD

256 PEs

256 PEs

7

128 PEs

256 PEs

/Al

100694

271158
Size of problem (edges)

417359 “

579993

problem sizes. The problems correspond to the dielectric cylinder shown in Figure 12.

